| $\mathbf{ A+B=B+A}$ | komutatif |
| $\mathbf{A+0=0+A}$ | identitas |
| $\mathbf{A+(-A)=0}$ | invers |
| $\mathbf{ A+(B+C)=(A+B)+C }$ | assosatif |
| $\mathbf{ (A+B)^T = A^T + B^T }$ | distributif transpus |
>x<-seq(1,10,1)
>xmat<-matrix(x,2,5)
>ymat<-matrix(x,5,2)
>xmat
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> ymat
[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
>data(cars) >x<-as.matrix(cars) >dim(x) [1] 50 2 >amat<-x%*%t(x) >bmat<-t(x)%*%x >dim(amat) [1] 50 50 >dim(bmat) [1] 2 2
>matrix(0,2,3)
[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 0
>matrix(1,2,3)
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1
>
> diag(1,3)
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1
> diag(2,3)
[,1] [,2] [,3]
[1,] 2 0 0
[2,] 0 2 0
[3,] 0 0 2
>diag(c(1,2,3,4,5))
[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 0 0 0
[2,] 0 2 0 0 0
[3,] 0 0 3 0 0
[4,] 0 0 0 4 0
[5,] 0 0 0 0 5
Sebaliknya jika diag()dilakukan pada matrik bujur sangkar, maka fungsi
ini akan mengekstrak diagonal matriks tersebut.
> diag(bmat) speed dist 13228 124903
» xmat%*%ymat
[,1] [,2]
[1,] 95 220
[2,] 110 260
>det(xmat%*%ymat)
[1] 500
> solve(xmat%*%ymat)
[,1] [,2]
[1,] 0.52 -0.44
[2,] -0.22 0.19
» det(ymat%*%xmat)
[1] 0
» solve(ymat%*%xmat) #tes walau kita tahu det=0.s
Error in ... system is exactly singular