Buku Panduan Program Statistika R

I Made Tirta

I Made Tirta UNEJ 2015
<table>
<thead>
<tr>
<th>1</th>
<th>SCIVIEWS: UNTUK PROGRAMER DAN STATISTIKA KHUSUS</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Menu SciViews</td>
<td>23</td>
</tr>
<tr>
<td>1.2</td>
<td>Mengenal Menu Dock SciView Lebih Jauh</td>
<td>27</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Menu Galeri Grafik</td>
<td>32</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Menu R Commander versi SCiViews</td>
<td>33</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Jendela File Explorer</td>
<td>35</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Jendela Objek Explorer</td>
<td>36</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Jendela Kartu Referensi</td>
<td>40</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Menu Web dan Dokumentasi</td>
<td>49</td>
</tr>
<tr>
<td>1.3</td>
<td>Referensi Lebih Lanjut</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>RCLI: MELANGKAH MELAMPAUI MENU</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>R dengan RCLI</td>
<td>54</td>
</tr>
<tr>
<td>2.2</td>
<td>Editor Skrip dengan Tinn-R</td>
<td>55</td>
</tr>
<tr>
<td>2.3</td>
<td>Beberapa Fungsi Penting dalam R</td>
<td>57</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Fungsi Dasar Matematika</td>
<td>57</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Operasi Vektor dan Matriks</td>
<td>59</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Fungsi Dasar Statistika</td>
<td>62</td>
</tr>
</tbody>
</table>
DAFTAR ISI

2.3.4 Fungsi Pembangkit Data Peubah Acak 64
2.3.5 Fungsi untuk Menangani Grafik 66
2.3.6 Aneka Rupa Perintah R 70
2.4 Menulis Program pada R 75
 2.4.1 Komponen-Komponen Program 75
 2.4.2 Langkah-langkah Penting dalam Penulisan Program 77
 2.4.3 Mendefinisikan Fungsi dalam R 81
 2.4.4 Mengevaluasi Nilai Fungsi 85
 2.4.5 Mengemas Keluaran Fungsi 88
 2.4.6 Menghindarkan Loop 90
 2.4.7 Menghitung Akar-Akar Persamaan dengan Metode Numerik 94
2.5 Mendefinisikan Ulang Fungsi Internal 102
2.6 Memanfaatkan Paket Program R 104
 2.6.1 Mencari Informasi Paket Program R 104
 2.6.2 Memanggil Pustaka dengan CLI 109
2.7 Mengemas Fungsi Menjadi Paket 111
2.8 CLI dan RCommander 113
2.9 Bacaan Lebih lanjut 114

Daftar Istilah 207

A Daftar Paket Pustaka/Library R 165

B Beberapa Demo Pustaka 213

C Beberapa Fungsi Penting R 219
 C.1 Fungsi Terkait Grafik 220
 abline 220
 biplot 221
 interaction.plot 223
 par 226
 rgl 237

I Made Tirta UNEJ 2015
<table>
<thead>
<tr>
<th>C.2 Fungsi Terkait Simulasi dan Organisasi Data</th>
<th>238</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>239</td>
</tr>
<tr>
<td>mvrnorm</td>
<td>241</td>
</tr>
<tr>
<td>Random</td>
<td>242</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.3 Fungsi Terkait RGUI</th>
<th>247</th>
</tr>
</thead>
<tbody>
<tr>
<td>tk2theme</td>
<td>247</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.4 Fungsi terkait Formula Model Statistika</th>
<th>252</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>252</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.5 Fungsi dari Paket dalam Bahasa Indonesia</th>
<th>255</th>
</tr>
</thead>
<tbody>
<tr>
<td>StatDemo</td>
<td>256</td>
</tr>
<tr>
<td>C.5.1 Skrip Dokumen Paket</td>
<td>258</td>
</tr>
</tbody>
</table>

I Made Tirta UNEJ 2015
I Made Tirta UNEJ 2015
<table>
<thead>
<tr>
<th>No</th>
<th>Gambar/Contoh/Ilustrasi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9</td>
<td>Ilustrasi Maksimum/ Minimum dengan Newton Raphson</td>
<td>97</td>
</tr>
<tr>
<td>2.10</td>
<td>Contoh Grafik dari Pustaka mgcv</td>
<td>110</td>
</tr>
<tr>
<td>2.11</td>
<td>Skrip pada Jendela Skrip R Commander</td>
<td>113</td>
</tr>
<tr>
<td>2.12</td>
<td>Skrip pada R Commander</td>
<td>115</td>
</tr>
</tbody>
</table>
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Daftar Fungsi Matematika</td>
<td>58</td>
</tr>
<tr>
<td>2.2</td>
<td>Daftar Operasi Vektor dan Matriks</td>
<td>60</td>
</tr>
<tr>
<td>2.3</td>
<td>Fungsi Dasar Statistika</td>
<td>62</td>
</tr>
<tr>
<td>2.4</td>
<td>Fungsi Pembangkit Data</td>
<td>65</td>
</tr>
<tr>
<td>2.5</td>
<td>Fungsi R untuk Grafik</td>
<td>67</td>
</tr>
<tr>
<td>2.6</td>
<td>Aneka Rupa Fungsi R</td>
<td>74</td>
</tr>
</tbody>
</table>
BAB 2

RCLI: MELANGKAH MELAMPAUI MENU

Tujuan Umum

Bab ini terutama disediakan bagi pengguna R yang memerlukan kemampuan R melebihi yang telah disediakan dalam menu R Commander dengan tujuan agar pembaca dapat mendefinisikan atau menjalankan fungsi-fungsi R melalui RCLI.

Tujuan Khusus

Setelah membaca bab ini pembaca diharapkan dapat:

1. menulis skrip R;
2. mengaktifkan dan memanfaatkan pustaka R sesuai kebutuhan;
3. membuat skrip simulasi data dan analisis dengan efisien;
4. memahami, meniru, dan memodifikasi keluaran yang dihasilkan oleh R Commander melalui RCLI.
2.1 R dengan RCLI

Dengan menggunakan RCLI diperoleh bentuk tampilan R-Console yang sama, baik dengan menggunakan sistem operasi Windows maupun Linux. Bentuk tampilan layar R console untuk R versi 2.0.0 adalah bagai berikut ini.

R version 2.6.1 (2007-11-26)
Copyright (C) 2007 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

Dengan adanya RGUI SciViews, seperti telah dibahas sebelumnya, maka penulisan dan eksekusi skrip dapat lebih mudah dilakukan melalui Jendela Command SciViews. Beberapa keuntungan menggunakan Jendela Command SciViews adalah:

1. telah dilengkapi panel penting seperti buka skrip, simpan skrip, dan eksekusi skrip;
2. dapat memeriksa kecocokan pasangan tanda kurung (), dan {};
3. bisa memberi arahan dalam memanggil fungsi yang telah didefinisikan;
4. dapat mengeksekusi skrip per baris atau secara keseluruhan;

I Made Tirta UNEJ 2015
5. tampilan memberikan warna berbeda (*script highlighting*) untuk notasi tertentu dan antara skrip dengan komentar.

![Gambar 2.1: Skrip pada Jendela Command SciViews.](image)

Semua kemampuan tersebut sangat membantu baik dalam mengedit maupun dalam mengeksekusi skrip (Lihat Gambar 2.1).

2.2 Editor Skrip dengan Tinn-R

Selain dengan SciView seperti telah diuraikan sebelumnya, tersedia juga editor dengan kemampuan sangat mirip dengan SciViews yang juga secara khusus dirancang untuk R, yaitu Tinn-R. Pada CD terlampir juga telah disediakan program Tinn-R versi 1.19. Untuk men-
BAB 2. RCLI: MELANGKAH MELAMPAUI MENU

goimalkan komunikasi dengan Tinn-R (misalnya melacak paket-paket dan objek-objek yang aktif), kita harus mengaktifkan beberapa paket dengan perintah berikut melalui RConsule atau melalui Tinn-R.

library(svMisc)
library(svWidgets)
library(svIDE)
library(tcltk)
library(tcltk2)

Tampilan Tinn-R dapat dilihat pada Gambar 2.2

Gambar 2.2: Tampilan Tinn-R.

R termasuk pemrograman berorentasi objek. Semua hal yang dikerjakan dalam R dapat disimpan dalam bentuk objek dengan mendefinisikannya. Definisi dalam R menggunakan notasi <-. Per-

I Made Tirta UNEJ 2015
hatikan bahwa notasi garis bawah (under score) "_" yang biasa dipakai pada S-Plus bermakna lain pada R. Seperti halnya S-Plus, R sangat peka terhadap huruf besar/ kecil (case sensitive).

NamaObjek<-definisi

Contoh 2.1. Pada Contoh berikut objek X bernilai 9 dan objek x bernilai 8.

```r
>x<-2^3
>X<-3^2
>x
[1] 8
>X
[1] 9
```

Objek R dapat berupa konstanta, vektor/ matriks atau fungsi. Agar objek yang didefinisikan dapat disimpan secara permanen, maka pada akhir penutupan program R harus dijawab Y (yes) ketika diminta konfirmasi Save workspace image ?

2.3 Beberapa Fungsi Penting dalam R

R telah dilengkapi dengan banyak fungsi yang dapat dimanfaatkan untuk penulisan skrip program. Selain fungsi-fungsi yang terdapat dalam paket standar, banyak fungsi yang didefinisikan dalam berbagai pustaka R.

2.3.1 Fungsi Dasar Matematika

I Made Tirta UNEJ 2015
<table>
<thead>
<tr>
<th>No</th>
<th>Nama Fungsi</th>
<th>Notasi Matematika</th>
<th>Fungsi R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>harga mutlak</td>
<td>$</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>goniometri</td>
<td>\sin, \cos, \tan</td>
<td>sin(), cos(), tan()</td>
</tr>
<tr>
<td>3</td>
<td>invers goniometri</td>
<td>$\sin^{-1}, \cos^{-1}, \tan^{-1}$</td>
<td>asin(), acos(), atan()</td>
</tr>
<tr>
<td>4</td>
<td>hiperbolikus</td>
<td>\sinh, \cosh, \tanh</td>
<td>sinh(), cosh(), tanh()</td>
</tr>
<tr>
<td>5</td>
<td>exponensial dan log</td>
<td>\exp, \ln</td>
<td>exp(), log()</td>
</tr>
<tr>
<td>6</td>
<td>logaritma 10</td>
<td>\ln, \log_{10}</td>
<td>log10()</td>
</tr>
<tr>
<td>7</td>
<td>gamma</td>
<td>$\Gamma()$</td>
<td>gamma()</td>
</tr>
<tr>
<td>8</td>
<td>bilangan bulat terkecil yang tidak kurang dari bilangan tertentu</td>
<td>$\lceil x \rceil$</td>
<td>ceiling()</td>
</tr>
<tr>
<td>9</td>
<td>bilangan bulat terbesar yang tidak lebih dari bilangan</td>
<td>$\lfloor x \rfloor$</td>
<td>floor()</td>
</tr>
<tr>
<td>10</td>
<td>bagian bulat suatu bilangan</td>
<td></td>
<td>tranc()</td>
</tr>
<tr>
<td>11</td>
<td>bilangan bulat terdekat</td>
<td></td>
<td>round()</td>
</tr>
<tr>
<td>12</td>
<td>pembulatan ke desimal tertentu</td>
<td></td>
<td>signif</td>
</tr>
</tbody>
</table>

I Made Tirta UNEJ 2015
2.3.2 Operasi Vektor dan Matriks

Untuk matriks atau vektor yang berdimensi sama, operasi hitung biasa dapat dilakukan dan itu akan dikerjakan berdasarkan unsur-unsur yang bersesuaian seperti pada contoh di atas. Khusus untuk operasi vektor dan matriks, R memiliki operasi dasar seperti yang ditunjukkan dalam Tabel 2.2 pada halaman 60.

Contoh 2.2. Misalkan kita ingin membentuk barisan dengan nilai awal 0, nilai akhir 10 dan banyaknya unsur 10, maka perintah dan hasilnya adalah sebagai berikut.

```r
> x <- seq(0, 10, length=8)
x [1] 0.000000  1.428571  2.857143  4.285714  5.714286  7.142857  8.571429 10.000000

> rep(c("A", "B", "C"), 5)
[1] "A" "B" "C" "A" "B" "C" "A" "B" "C" "A" "B" "C" "A" "B" "C"

> rep(1:3, each=5)
[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

> rep(1:3, each=2, 5)
[1] 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3

Beberapa cara pembulatan pecahan desimal dapat dilakukan dengan berbagai perintah berikut.

```r
cround(x)
[1] 0 1 3 4 6 7 9 10
cfloor(x)
[1] 0 1 2 4 5 7 8 10
ceiling(x)
[1] 0 2 3 5 6 8 9 10
csignif(x, 3)
```

I Made Tirta UNEJ 2015
### Tabel 2.2: Daftar Operasi Vektor dan Matriks dalam R. Operasi lanjut yang lebih spesifik dapat dilihat pada pustaka *matrix*

<table>
<thead>
<tr>
<th>No</th>
<th>Nama Fungsi/ Operasi</th>
<th>Notasi Matematika</th>
<th>Fungsi R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pembentukan matriks</td>
<td>$x$</td>
<td><code>matrix(data, nbaris, nkolom)</code></td>
</tr>
<tr>
<td>2</td>
<td>pembentukan barisan</td>
<td></td>
<td><code>seq(awal, akhir, kenaikan)</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>seq(awal, akhir, length=n)</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>rep((el.), replik)</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>rep((elemen),each=n)</code></td>
</tr>
<tr>
<td>3</td>
<td>barisan berpola</td>
<td></td>
<td><code>t(x)</code></td>
</tr>
<tr>
<td>4</td>
<td>transpose matriks</td>
<td>$x^T$</td>
<td><code>det(x)</code></td>
</tr>
<tr>
<td>5</td>
<td>determinan matriks</td>
<td><code>det(x)</code></td>
<td><code>diag(data)</code></td>
</tr>
<tr>
<td>6</td>
<td>matriks diagonal</td>
<td><code>$D$</code></td>
<td><code>diag(matriks)</code></td>
</tr>
<tr>
<td>7</td>
<td>diagonal matriks</td>
<td></td>
<td><code>tr(matriks)</code></td>
</tr>
<tr>
<td>8</td>
<td>teras (<em>trace</em>) matriks</td>
<td>$xy$</td>
<td><code>x %*% y</code></td>
</tr>
<tr>
<td>9</td>
<td>perkalian matriks</td>
<td>$x^{-1}$</td>
<td><code>solve(x)</code></td>
</tr>
<tr>
<td>10</td>
<td>inverse matriks</td>
<td></td>
<td><code>sum(f(x))</code></td>
</tr>
<tr>
<td>11</td>
<td>jumlah berturutan elemen- elemen yang sudah dikenakan fungsi $f$</td>
<td>$\sum f(x)$</td>
<td><code>prod(f(x))</code></td>
</tr>
<tr>
<td>12</td>
<td>hasil kali berturutan elemen-elemen yang sudah dikenakan fungsi $f$</td>
<td>$\prod f(x)$</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>menunjuk elemen ke $i$ vektor $v$ atau elemen ke $i, j$ matriks $x$</td>
<td>$v_i, x_{ij}$</td>
<td><code>$v[i], x[i,j]$</code></td>
</tr>
</tbody>
</table>
Contoh 2.3. Misalnya, kita memiliki dua vektor, yaitu \( X = \begin{pmatrix} 4 \\ 5 \\ 3 \\ 6 \end{pmatrix} \) dan 
\( Y = \begin{pmatrix} 2 \\ 4 \\ 3 \\ 6 \end{pmatrix} \), maka hasil berbagai operasi hitung biasa di antara kedua vektor ini adalah:

\[
\begin{align*}
&> x<-\text{matrix}(c(4,5,3,6),4,1) \\
&> y<-\text{matrix}(c(2,4,3,6),4,1) \\
&> x*y \\
&\quad [,1] \\
&\quad [1,] 8 \\
&\quad [2,] 20 \\
&\quad [3,] 9 \\
&\quad [4,] 36 \\
&> x/y \\
&\quad [,1] \\
&\quad [1,] 2.00 \\
&\quad [2,] 1.25 \\
&\quad [3,] 1.00 \\
&\quad [4,] 1.00 \\
&> \text{sum(log(x))} \\
&\quad [1] 5.886104 \\
&> \text{prod(log(x))} \\
&\quad [1] 4.39191 \\
\end{align*}
\]

Hasil beberapa operasi vektor atau matriks diperoleh seperti berikut.

\[
\begin{align*}
&> x\%\%t(y) \\
&{I \text{ Made Tirta UNEJ 2015}}
\end{align*}
\]
BAB 2. RCLI: MELANGKAH MELAMPAUI MENU

\[
\begin{array}{cccc}
[1,] & 8 & 16 & 12 & 24 \\
[2,] & 10 & 20 & 15 & 30 \\
[3,] & 6 & 12 & 9 & 18 \\
[4,] & 12 & 24 & 18 & 36 \\
\end{array}
\]

\[
> \text{t(x)} \times \text{y} \\
\begin{array}{c}
[1,] \\
[1,] 73 \\
\end{array}
\]

\[
> \text{solve(t(x)} \times \text{y}) \\
\begin{array}{c}
[1,] 0.01369863 \\
\end{array}
\]

\[
> \text{x}[2] \\
\begin{array}{c}
[1] 5 \\
\end{array}
\]

2.3.3 Fungsi Dasar Statistika

Selain fungsi dasar dalam matematika, R juga mempunyai sekumpulan fungsi dasar yang biasa dipergunakan dalam bidang statistika. Variabel dalam fungsi statistika ini berupa vektor data. Fungsi-fungsi ini dirangkum pada Tabel 2.3

<table>
<thead>
<tr>
<th>No</th>
<th>Nama Fungsi</th>
<th>Notasi Statistika</th>
<th>Fungsi perintah dalam R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>minimum, maksimum</td>
<td>min, max</td>
<td>min(), max()</td>
</tr>
<tr>
<td>2</td>
<td>range</td>
<td>range</td>
<td>range()</td>
</tr>
<tr>
<td>3</td>
<td>mean, median</td>
<td>( \bar{x}, \text{median} )</td>
<td>mean(), median()</td>
</tr>
<tr>
<td>4</td>
<td>variance</td>
<td>( S^2 )</td>
<td>var()</td>
</tr>
<tr>
<td>5</td>
<td>correlation</td>
<td>( \rho_{xy} )</td>
<td>cor(x,y)</td>
</tr>
<tr>
<td>6</td>
<td>ringkasan data</td>
<td></td>
<td>summary()</td>
</tr>
<tr>
<td>7</td>
<td>contoh/ sampling data</td>
<td></td>
<td>sample()</td>
</tr>
</tbody>
</table>

range memberikan informasi minimum dan maksimum secara serempak.

Tabel 2.3: Fungsi Dasar Statistika pada R

I Made Tirta UNEJ 2015
Contoh 2.4. Diketahui dua vektor \( \mathbf{X}, \mathbf{Y} \) seperti pada contoh sebelumnya. Jika masing-masing vektor diperlakukan sebagai data, maka hasil terhadap beberapa fungsi statistika tadi adalah:

\[
\begin{align*}
\text{min}(x) & = 3 \\
\text{max}(y) & = 6 \\
\text{mean}(x) & = 4.5 \\
\text{var}(y) & = 2.916667 \\
\text{cor}(x,y) & = 0.8315218 \\
\text{range}(x) & = [3, 6] \\
\text{range}(y) & = [2, 6]
\end{align*}
\]

\[
\begin{align*}
\text{sample}(0:1,30,\text{replace}=T) & \text{ # simulasi Tos Uang logam} \\
& = [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1] \\
\text{sample}(c("A","G"),15,\text{replace}=T) & \text{ # Simulasi Tos Dadu} \\
\text{sample}(1:6,30,\text{replace}=T) & \text{ # simulasi Tos Dadu} \\
& = [6, 3, 2, 6, 4, 1, 1, 4, 2, 3, 6, 5, 3, 4, 3, 4, 2, 3, 1, 4, 1, 5, 3, 5, 1, 5, 1, 6, 4, 1]
\end{align*}
\]
2.3.4 Fungsi Pembangkit Data Peubah Acak

Disamping fungsi dasar yang telah dibicarakan, R juga memiliki fungsi-fungsi statistika lain yang banyak dipergunakan dalam simulasi data. Fungsi-fungsi ini merupakan fungsi untuk membangkitkan data dari peubah acak dengan berbagai distribusi yang banyak dijumpai, seperti normal, poisson, dan gamma dengan jumlah/ukuran sampel \( n \). Pada dasarnya ada empat jenis fungsi terkait dengan distribusi peubah acak yaitu sebagai berikut.

- \( \text{rdistribusi} \) untuk membangkitkan data acak/ random dari suatu distribusi dengan Parameter tertentu.
- \( \text{ddistribusi} \) untuk mencari nilai fungsi kepadatan \( f(x) \) pada suatu nilai \( x \) tertentu.
- \( \text{pdistribusi} \) untuk mencari luas daerah (nilai peluang) suatu distribusi yang dibatasi oleh nilai \( x \) tertentu.
- \( \text{qdistributed} \) untuk mencari nilai \( x \) yang membatasi luas daerah (nilai peluang) tertentu dari suatu distribusi.

Dalam istilah di atas, \( \text{distribusi} \) merupakan nama-nama distribusi yang tersedia pada R di antaranya beberapa yang penting yang banyak dipakai adalah \( \text{norm} \) (normal), \( \text{gamma} \) (Gamma), \( \text{t} \) (t), \( \text{F} \) (F), \( \text{chisq} \) (\( \chi^2 \)), \( \text{pois} \) (Poisson), \( \text{binom} \) (Binomial). Sebagian daftar fungsi-fungsi ini dapat dilihat pada Tabel 2.4.

Contoh 2.5. Misalkan kita ingin mensimulasi data dari distribusi normal dengan parameter populasi \( \mu = 50 \) dan \( \sigma = 5 \). Kita dapat menghitung mean (rata-rata) maupun variansi sampel dari data yang dibangkitkan untuk melihat kedekatannya dengan \( \mu \) dan \( \sigma^2 \).

\[
> \text{mean(rnorm(100, 50, 5))}
\]
[1] 50.19985

\[
> \text{var(rnorm(100, 50, 5))}
\]
[1] 26.99507

I Made Tirta UNEJ 2015
Tabel 2.4: Fungsi Pembangkit Data pada R. Selain fungsi membangkitkan data acak juga terdapat fungsi-fungsi menghitung peluang distribusi.

<table>
<thead>
<tr>
<th>No</th>
<th>Nama Distribusi</th>
<th>Parameter</th>
<th>Perintah dalam R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal $N(\mu, \sigma^2)$</td>
<td>mean=$\mu$, varians=$\sigma^2$</td>
<td>rnorm(n, mean, sigma); dnorm(x, mean, sigma); pnorm(x, mean, sigma); qnorm(p, mean, sigma)</td>
</tr>
<tr>
<td>2</td>
<td>Gamma $G(\alpha, \beta)$</td>
<td>$\mu = \alpha/\beta$, $\sigma^2 = \alpha/\beta^2$</td>
<td>rgamma(n, alpha, beta); dgamma(x, alpha, beta); pgamma(x, alpha, beta); qgamma(p, alpha, beta)</td>
</tr>
<tr>
<td>3</td>
<td>Poison($\lambda$)</td>
<td>$\mu = \sigma^2 = \lambda$</td>
<td>rpois(n, lambda); dpois(x, lambda); ppois(x, lambda); qpois(p, lambda)</td>
</tr>
<tr>
<td>4</td>
<td>Binomial $(s, \pi)$</td>
<td>$\mu = s\pi$, $\sigma^2 = s\pi(1 - \pi)$</td>
<td>rbinom(n, s, pi); dbinom(x, s, pi); pbinom(x, s, pi); qbinom(p, s, pi)</td>
</tr>
<tr>
<td>5</td>
<td>Chi-kuadrat ($\chi^2$)</td>
<td></td>
<td>rchisq(n,nu); dchisq(x, nu); pchisq(x, nu); qchisq(p,nu)</td>
</tr>
<tr>
<td>6</td>
<td>$t_\nu$</td>
<td></td>
<td>rt(n,nu); dt(x,nu); pt(x,nu); qt(p,nu)</td>
</tr>
</tbody>
</table>
2.3.5 Fungsi untuk Menangani Grafik

Untuk menangani grafik, R memiliki beberapa fungsi seperti ditunjukkan pada Tabel 2.5. Dokumentasi yang lebih lengkap dapat diperoleh dengan menggunakan perintah help(...). Di antara fungsi ini adalah untuk membuat lay out lembaran grafik yang dibagi menjadi matriks sublembaran kecil \((a \times b)\). Masing-masing sublembaran dapat memiliki judul dan absis sendiri (lihat Gambar 2.3).

Contoh 2.6. Misalkan kita inginkan 1 lembar tampilan grafik dibagi menjadi 6 subgrafik yang tersusun atas 2 \(\times\) 3 (2 baris dan 3 kolom). Tentu saja sumbu grafik ini diatur sehingga yang biasa diberi label sumbu adalah semua sumbu bawah, sumbu paling kiri, sumbu atas, dan sumbu paling kanan. Dengan demikian, perintahnya adalah seperti berikut dan hasil grafiknya dapat dilihat pada Gambar 2.3.

```
par(mfrow=c(2,3))
plot(1,1,xlim=c(0,4),ylim=c(1,3),)
```

Gambar 2.3: Lay Out Multi Grafik \(m \times n\)

I Made Tirta UNEJ 2015
Tabel 2.5: Beberapa Fungsi Dasar R untuk Grafik. Tersedia fungsi baik untuk dua maupun tiga dimensi.

<table>
<thead>
<tr>
<th>No</th>
<th>Tujuan</th>
<th>Perintah R</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>membuat layout multigrafik (banyak layar)</td>
<td><code>par(mfrow=c(b, k))</code></td>
<td>b=banyak baris k=banyak kolom</td>
</tr>
<tr>
<td>2</td>
<td>membuat diagram (grafik pencaran= p, dan garis =l)</td>
<td><code>plot(x,y, type='l/p/b', xlab='', ylab='', lty=0, ylim=c(,))</code></td>
<td>l=line(grafik garis) p=point(grafik titik) b=keduanya</td>
</tr>
<tr>
<td>3</td>
<td>menambah garis pada grafik yang sudah ada</td>
<td><code>lines(x, y, lty=, pch= 'numerik')</code></td>
<td>angka numerik menunjukkan jenis garis</td>
</tr>
<tr>
<td>4</td>
<td>menambah titik pada grafik yang sudah ada</td>
<td><code>points(x, y, pch='numerik/simbol')</code></td>
<td>numerik/simbol menunjukkan jenis titik</td>
</tr>
<tr>
<td>5</td>
<td>memunculkan sumbu</td>
<td><code>axis(1,outer=T,las=1)</code></td>
<td>Nomor aksis 1=bawah 2=kiri, 3=atas, 4=kanan.</td>
</tr>
<tr>
<td>6</td>
<td>menambah text</td>
<td><code>text(x,y,&quot;teks&quot;)</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>memberi Legend</td>
<td><code>legend(xpos, ypos, &quot;label&quot;, lty=1:m, marks=)</code></td>
<td>lty=jenis garis, marks= jenis label titik, m=banyaknya label</td>
</tr>
<tr>
<td>8</td>
<td>membuat grafik normalitas data</td>
<td><code>qqnorm(data)</code> dan <code>qqline(data)</code></td>
<td>dikerjakan berurutan untuk memperoleh grafik titik dan garis</td>
</tr>
<tr>
<td>9</td>
<td>membuat grafik tiga dimensi</td>
<td><code>persp(x,y,z)</code></td>
<td>Data dalam bentuk matriks</td>
</tr>
<tr>
<td>10</td>
<td>membuat lay out kompleks</td>
<td><code>contour(x,y,z)</code></td>
<td>Unsur matriks disisi posisi grafik no.layar diurut berdasarkan urutan pembagian</td>
</tr>
<tr>
<td>11</td>
<td>membagi layar</td>
<td><code>split.screen(c(baris, kolom), no.layar)</code></td>
<td>Made Tirta UNEJ 2015</td>
</tr>
</tbody>
</table>
text(2,2,"Gambar 1.1")
plot(1,2,xlim=c(0,4),ylim=c(1,3))
text(2,2,"Gambar 1.2")
plot(1,3,xlim=c(0,4),ylim=c(1,3))
text(2,2,"Gambar 1.3")
plot(2,1,xlim=c(0,4),ylim=c(1,3))
text(2,2,"Gambar 2.1")
plot(2,2,xlim=c(0,4),ylim=c(1,3))
text(2,2,"Gambar 2.2")
plot(2,3,xlim=c(0,4),ylim=c(1,3))
text(2,2,"Gambar 2.3")

Layout yang lebih kompleks dapat dilakukan dengan menggunakan fungsi `layout()` dan `split.screen()`. Pada program berikut layout layar dibagi menjadi 4 wilayah: 1 bagian atas dan 3 bagian bawah. Hasilnya dapat dilihat pada Gambar 2.4

```
l1 <- layout(matrix(c(1, 1, 1, 2, 3, 4), nr = 2, byrow = TRUE))
```

Gambar 2.4: Out Multi Grafik Kompleks

```
l1 <- layout(matrix(c(1, 1, 1, 2, 3, 4), nr = 2, byrow = TRUE))
```

I Made Tirta UNEJ 2015
2.3. BEBERAPA FUNGSI PENTING DALAM R

plot(1,1,xlim=c(0,4),ylim=c(1,3),)
text(2,2,"Gambar 1")
plot(1,2,xlim=c(0,4),ylim=c(1,3))
text(2,2,"Gambar 2.1")
plot(1,3,xlim=c(0,4),ylim=c(1,3))
text(2,2,"Gambar 2.2")
plot(2,1,xlim=c(0,4),ylim=c(1,3))
text(2,2,"Gambar 2.3")
mtext("Fungsi \"layout\" ", side = 3, outer = TRUE,
font = 2)

Pada program berikut layar dibagi menjadi 5 wilayah layar tetapi dengan 7 nomor dengan cara berikut.

1. `split.screen(2,1)` membagi layar utama menjadi 2 baris 1 kolom dengan `screen(1)` adalah layar bagian atas dan `screen(2)` adalah layar bagian bawah;

2. `split.screen(c(2,1),1)` membagi layar `screen(1)` menjadi 2 bagian dengan nama `screen(3)`, `screen(4)`;

3. `split.screen(c(1,2),1)` membagi layar `screen(1)` menjadi 2 bagian dengan nama `screen(3)`, `screen(4)`;

4. `split.screen(c(1,3),2)` membagi layar `screen(2)` menjadi 3 bagian dengan nama `screen(5)`, `screen(6)`, `screen(6)`;

Selanjutnya pembuatan grafik disesuaikan dengan nomor layar yang diinginkan, seperti pada program berikut.

`split.screen(c(2,1))`
`split.screen(c(1,2), screen = 1)`
`split.screen(c(1,3), screen = 2)`
`screen(3)`
`plot(10:1)`
`screen(4)`
`plot(10:1)`
`screen(5)`
`plot(10:1)`
`screen(6)`
`plot(10:1)`

I Made Tirta UNEJ 2015
screen(7)
plot(10:1)

Hasilnya program di atas, dapat dilihat pada Gambar 2.5. Sementara Gambar ?? diperoleh dari program berikut ini.

split.screen(c(1,2))
split.screen(c(2,1), screen = 2)
screen(1)
plot(10:1)
screen(3)
plot(10:1)
screen(4)
plot(10:1)

Gambar 2.5: *Lay Out* Multi Grafik Kompleks Lain

2.3.6 Aneka Rupa Perintah R

Di samping fungsi-fungsi yang berhubungan dengan penanganan file seperti membaca file skrip, menyimpan file keluaran, mencetak ko-

I Made Tirta UNEJ 2015
2.3. BEBERAPA FUNGSI PENTING DALAM R

mentar dan variabel, ada juga fungsi lain di antaranya adalah seperti yang ada pada Tabel [2.6].

**Contoh 2.7.** Misalkan kita ingin mencetak keluaran yang sekaligus memuat komentar atau nama beserta nilainya, seperti “Jika \( x = 2 \) dan \( y = 3 \) maka hasil kali \( x \) dengan \( y \) adalah 6. Skrip untuk program ini adalah sebagai berikut.

\[
x<-2
y<-3
cat("Hasil kali x dengan y adalah",x*y)
\]

**Contoh 2.8.** Untuk menjalankan contoh yang ada pada fungsi linear model \( \text{lm}() \) maka perintahnya adalah

\[
\text{example(lm)}
\]

dan sebagian hasil luaran yang terjadi adalah:

I Made Tirta UNEJ 2015
> example(lm)

lm> ctl <- c(4.17, 5.58, 5.18, 6.11, 4.5, 4.61, 5.17, 4.53, 5.33, 5.14)

lm> trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)

lm> group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))

lm> weight <- c(ctl, trt)

lm> anova(lm.D9 <- lm(weight ~ group))

Analysis of Variance Table

Response: weight

                Df Sum Sq Mean Sq F value Pr(>F)
group           1 0.6882  0.6882  1.4191  0.249
Residuals       18 8.7293  0.4850

lm> summary(lm.D90 <- lm(weight ~ group - 1))

Call:
  lm(formula = weight ~ group - 1)

Residuals:
   Min     1Q Median     3Q    Max
-1.0710 -0.4938  0.0685  0.2462  1.3690

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
groupCtl     5.0320     0.2202  22.85   9.55e-15 ***
groupTrt     4.6610     0.2202  21.16   3.62e-14 ***
---
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.6964 on 18 degrees of freedom
Multiple R-Squared: 0.9818,    Adjusted R-squared: 0.9798

I Made Tirta UNEJ 2015
F-statistic: 485.1 on 2 and 18 DF, p-value: < 2.2e-16
Tabel 2.6: Aneka Rupa Fungsi R. Fungsi-fungsi ini bermanfaat untuk menangani file, skrip dan luaran

<table>
<thead>
<tr>
<th>No</th>
<th>Tujuan</th>
<th>Perintah R</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>membaca tanpa membuka file</td>
<td>source(&quot;namafile&quot;)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>mengarahkan penulisan hasil ke file</td>
<td>sink(&quot;nama file&quot;)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>mencetak hasil (variabel)</td>
<td>print(variabel)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>mencetak teks</td>
<td>cat(&quot;teks&quot;)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>mencetak garis baru</td>
<td>cat(&quot;\n&quot;)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>mendefinisikan variabel, konstanta atau fungsi (berfungsi sebagai &quot;==&quot; dalam matematika)</td>
<td>nama &lt;- definisi</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>membaca tabel</td>
<td>read.table(&quot;namatabel&quot;)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>mengambil bagian dari kesatuan(objek)</td>
<td>objek$bagian</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>menulis komentar yang tidak dieksekusi R</td>
<td># komentar</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>mengatur tugas dasar komputer</td>
<td>options()</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>memeriksa file atau menjalankan file demo</td>
<td>demo(NamaFile)</td>
<td>pustaka harus diaktifkan</td>
</tr>
<tr>
<td>12</td>
<td>menjalankan file contoh pustaka</td>
<td>example(NamaFile)</td>
<td>pustaka harus diaktifkan</td>
</tr>
</tbody>
</table>

I Made Tirta UNEJ 2015
2.4 Menulis Program pada R

Pada bagian ini akan dibahas secara lebih detail cara-cara mendefinisikan fungsi, maupun membuat skrip program.

2.4.1 Komponen-Komponen Program

Program adalah sekumpulan perintah yang menjadi suatu kesatuan yang harus dikerjakan oleh komputer. Program biasanya ditulis untuk mengerjakan pekerjaan sejenis untuk keperluan jangka panjang dan bisa dimanfaatkan oleh orang lain yang tidak terlibat dalam pembuatan program tersebut. Oleh karena itu penulisan program ini harus memenuhi beberapa persyaratan. Naskah dari suatu program biasa disebut listing atau script dari program tersebut. Komponen-komponen pemrograman yang besar sebaiknya memuat hal-hal berikut.


   options(argumen1, argument2,.....);

Beberapa pilihan yang dapat diatur adalah:

- **echo**= T atau F, jika T berarti setiap ekspresi yang dieksesu atau dievaluasi akan ditulis dulu (echoed) sebelum dievaluasi.
- **digits**= angka yang menunjukkan banyaknya angka penting yang akan dicetak di print out.
- **object.size**= 1e+08 atau lebih yang diperlukan untuk program yang memerlukan memori besar (misalnya dalam simulasi).

I Made Tirta UNEJ 2015
2. **Definisi fungsi.** Apabila dalam program itu diperlukan fungsi yang didefinisikan sendiri, sebaiknya fungsi ini dikelompokkan dan didefinisikan pada bagian awal;

```r
fungsi1<-function(){
fungsi2<-function()
```

3. **Data dan Inisiasi.** Bagian berikut skrip biasanya berisi pengambilan data, baik yang dilakukan secara simulasi maupun dengan menggunakan data riil yang dimpor dari berbagai program yang tersedia. Data riil harus diaktifkan atau diset sebelum dianalisis.

Untuk data simulasi sebelum variabel dan konstanta bisa dipergunakan harus ditetapkan nilai-nilai awalnya. Nilai awal (inisiasi) dari variabel-variabel ini juga sebaiknya diberikan pada bagian tersendiri secara mengelompok untuk memudahkan pemeriksaan atau perubahan.

4. **Program inti.** Bagian ini memuat inti dari pemrograman (looping, perhitungan-perhitungan matematika/statistika dan lain-lainnya).

5. **Penutup.** Bagian penutup bisa berisi rangkuman dari hasil-hasil yang diperoleh dalam pemrograman tersebut. Biasanya bagian ini berisi perintah menyimpan file, mentabulasi hasil, atau membuat grafik.

**Contoh 2.9.** Contoh pemrograman yang lengkap beserta komponen-komponennya.

```r
namafile
options(echo=F,digits=4)
#fungsi
f1<-function(p1,p2){
```

I Made Tirta UNEJ 2015
ekspresi1
ekspresi2
hasil akhir
}

#inisiasi
p1<-5
p2<-15 #Program utama
#loop luar
for(i in 1:n){
    while(kon1){
        #loop dalam
tugas1
    }
}

#Penutup Print(hasil.akhir)
write(t(x),file="x.byrows",ncol=ncol(x))

### 2.4.2 Langkah-langkah Penting dalam Penulisan Program

Program yang baik adalah program yang memenuhi beberapa persyaratan di antaranya adalah seperti berikut ini.

1. Mengerjakan dengan benar apa yang mestinya dikerjakan. Untuk program yang dikonsumsi sendiri atau bagi pemula, syarat yang paling utama adalah program yang dibuat harus mengerjakan dan memberi hasil yang benar.

2. Alur logika dan matematikanya benar dan mudah diikuti. Untuk itu, sebelum menulis skrip suatu pemrograman dan yakinkan bahwa baik persamaan-persamaan maupun fungsi-fungsi matematika yang akan digunakan sudah benar/valid. Selain itu langkah yang lebih rinci berupa algoritma dari apa yang akan dikerjakan oleh komputer sudah siap sebelum memulai menulis skrip dan yakinkan bahwa algoritma ini sudah benar. Algoritma ini bisa juga dibuat secara lebih eksplisit berupa diagram alir (flow chart.)
3. Mudah direvisi. Apa yang akan dikerjakan komputer seharusnya dapat dilacak dengan mudah sehingga kalau ada kesalahan juga mudah direvisi. Penelusuran atau revisi diharapkan tetap bisa dilakukan dengan mudah, meskipun suatu skrip program baru dibuka lagi setelah beberapa minggu, bulan, atau tahun.

4. Efektif dan efisien dalam memanfaatkan memori dan hardisk. Sebenarnya masalah efisiensi penggunaan memori dan kecepatan tidak terlalu penting bagi pemula, karena kecepatan dan penggunaan memori ini secara umum dapat teratasi dengan semakin canggihnya piranti keras komputer sekarang sehingga masalah ini tidak akan terlalu menjadi hambatan.

5. Mudah dimanfaatkan. Syarat terakhir penting terutama kalau program yang dibuat juga disediakan bagi orang lain yang mungkin tidak banyak memahami pemrograman.

Serangkaian perintah atau fungsi-fungsi matematika yang sering digunakan sebaiknya didefinisikan dalam bentuk fungsi R. Identifikasi fungsi-fungsi dan variabel yang akan diperlukan dan didefinisikan di bagian awal. Usahakan memanfaatkan sebanyak mungkin fungsi-fungsi internal yang sudah ada dalam paket (dalam hal ini R). Ini penting agar penggunaan memori efisien mengingat selain karena sifatnya yang internal fungsi-fungsi ini telah teruji kemampuannya. Buatlah program dalam ukuran sedang dan program yang besar sebaiknya dipecah-pecah menjadi beberapa modul/subprogram yang hanya dipanggil kalau diperlukan. Berilah komentar atau keterangan pada setiap fungsi yang didefinisikan, demikian juga pada setiap langkah penting. Hal ini akan membantu banyak dalam pemahaman dan proses perbaikan/revisi terutama jika program yang dibuat dibuka lagi setelah kurun waktu yang agak lama.

Khusus untuk R, sedapat mungkin hindarkan atau kurangi penggunaan loop terutama loop for() yang tidak perlu, kecuali tujuannya memang untuk mendemonstrasikan kerja dari loop tersebut. Untuk R, lebih efisien digunakan perhitungan vektor dari pada loop.

I Made Tirta UNEJ 2015
Karenanya, khususnya bagi pemrogram yang sudah berpengalaman, sedapat mungkin gunakan perhitungan secara vektor. Jika *loop* digunakan, pada tahap awal, gunakan kriteria konvergensi yang agak kasar/besar, setelah program berfungsi dengan baik, kriteria konvergensi dapat diatur sesuai kebutuhan. Skrip *loop* selain dikelompokkan dengan menggunakan kurung kurawal, juga perlu di-*indent* sesuai dengan tingkatnya. Berikut ini diberikan contoh program yang belum memerlukan adanya fungsi.

**Contoh 2.10.** Kita ingin mengilustrasikan hubungan antara mean populasi dengan rata-rata sampel berdasarkan ukuran sampelnya.

Untuk tujuan itu kita harus membuat *loop* pembangkitan data random untuk berbagai ukuran sampel, misalnya dari 10 sampai 100 dengan kenaikan 10. Untuk itu kita akan menempuh beberapa langkah berikut ini.

1. Mendefinisikan matriks yang terdiri atas 2 kolom dan 10 baris, untuk menampung mean sampel dari 10 macam ukuran sampel. Kolom pertama bisa diisi ukuran sampel dan kolom kedua berisi besarnya mean masing-masing sampel. Sebagai inisiasi, kita bisa mendefinisikan seluruh elemen matriks sama dengan 0.

   ```r
 m<-matrix(0,10,2)
   ```

2. Membuat *loop* yang membuat pembangkitan data diulang mulai dari ukuran sampel 10 sampai dengan 100. Untuk ini ada beberapa alternatif.

   (a) Dengan menggunakan indeks *i* = 1...10 ditentukan ukuran sampelnya adalah *i* \times 10

   ```r
 for(i in 1:10){ n.sampel<-i*10 }
   ```

   (b) Dengan menggunakan batasan maksimum 100, sedangkan `n.sampel` mengalami kenaikan 10 mulai dari 10

I Made Tirta UNEJ 2015
n.sampel<-10
while(n.sample<100){
  n.sampel<-n.sampel+10 }

3. Selanjutnya pada loop tadi dapat disisipkan perintah membangkitkan data normal dengan mean 50 dan variansi 10, $X \sim N(50, 10)$. Hal ini bisa juga dilakukan dengan membangkitkan data $Z \sim N(0, 1)$ selanjutnya ditransformasi dengan $X = \sigma Z + \mu$. Pada bagian/tahap yang sama kita menghitung mean dari $X$ serta menaruh hasilnya pada matriks $m$ pada baris dan kolom yang bersesuaian

$Z<-rnorm(n.sample)$
$X<-sqrt(10)*Z+50$
$m[i,1]<-n.sampel$
$m[i,2]<-mean(X)$

4. Selanjutnya, setelah loop berakhir, kita bisa mencetak grafiknya. Grafik sederhana dapat dibuat dengan menggunakan perintah

plot(m[,1],m[,2],type='l').

$m[,]$ menunjukkan seluruh baris kolom $k$ sedangkan $m[i,]$ menunjukkan baris kedua untuk seluruh kolom. Perintah yang lebih lengkap dapat dilakukan dengan memberikan judul dan label sumbu koordinat, atau bahkan warna.

plot(m[,1],m[,2],type='l',xlab='Sumbu X',ylab='Sumbu Y',
    main='Judul Grafik')

Secara keseluruhan kita mempunyai skrip berikut.

n<-10
m<-matrix(0,n,2)
for(i in 1:n){
  ...
}

I Made Tirta UNEJ 2015
2.4. MENULIS PROGRAM PADA R

```r
n.sampel<-i*10
Z<-rnorm(n.sample)
X<-sqrt(10)*Z+50
m[i,1]<-n.sampel
m[i,2]<-mean(X)
}
plot(m[,1],m[,2],type='l',xlab='Sumbu X',ylab='Sumbu Y',main='Judul Grafik')
```

Jika petunjuk di atas diikuti dengan benar maka kita akan mendapat grafik seperti pada Gambar 2.7 pada halaman 82.

**Contoh 2.11.** Misalkan kita ingin membuat grafik dari persamaan matematika berbentuk persamaan parametriks seperti berikut.

\[
(x, y) = \begin{cases} 
  x = \phi_1(t) \\
  y = \phi_2(t) 
\end{cases}
\]

Salah satu program yang bisa dibuat adalah seperti berikut dengan hasil seperti pada Gambar 2.8.

```r
par(mfrow=c(2,2))
t<-seq(0,360,5)
y<-sin(t)
x<-cos(t)
plot(x,y,type='l',col='blue',main='(cos(t),sin(t))')
plot(x^2,y,type='l',col='green',main='(cos(t)^2,sin(t))')
plot(x,x*y,type='l',col='red',main='(cos(t),cos(t)*sin(t))')
plot(y,y/x,type='l',col='cyan',main='(cos(t),cos(t)/sin(t))')
```

2.4.3 Mendefinisikan Fungsi dalam R

Perintah panjang (terutama terkait dengan rumus-rumus matematika) dan sering dievaluasi dengan nilai berbeda dapat ditulis sebagai

I Made Tirta UNEJ 2015
BAB 2. RCLI: MELANGKAH MELAMPAUI MENU

Gambar 2.7: Ilustrasi Simulasi Mean Populasi dan Rata-rata Sampel

Gambar 2.8: Contoh Grafik Fungsi Parametrik Dimensi Dua

I Made Tirta UNEJ 2015
fungsi. Berikut akan dibahas secara lebih rinci cara-cara mendefinisikan fungsi sesuai petunjuk yang telah diberikan pada bagian sebelumnya. Sebagaimana telah dibicarakan sebelumnya bahwa fungsi dalam R memiliki parameter dengan struktur berikut:

\[
\text{nama.\text{fungsi}} <- \text{function(\text{parameter1, parameter2})}\{
\text{\hspace{1em} ekspresi1,}
\text{\hspace{1em} \ldots}
\text{\hspace{1em} fungsi1}
\text{\hspace{1em} \ldots}
\text{\hspace{1em} hasil akhir (returned value)}
\}
\]

Selain variabel atau konstanta yang didefinisikan secara internal (seperti \(\pi = 3.1415 \ldots\)), maka semua variabel atau konstanta yang dipergunakan dalam definisi harus diperlakukan sebagai parameter. Dalam suatu fungsi kita dibenarkan memanggil fungsi yang lain. Di antara sekian banyak perhitungan yang dilakukan dalam suatu fungsi, maka harus ditegaskan hasil yang akan ditampilkan sebagai hasil akhir eksekusi fungsi. Hasil ini disebut sebagai returned value yang dilakukan dengan memanggil kembali hasil yang telah dihitung. Pada dasarnya fungsi R adalah translasi dari fungsi matematika ke dalam bahasa R. Hal ini akan terlihat jelas dari beberapa contoh yang diberikan.

\[
\text{fungsi.f} <- \text{function(\text{x})}\{\text{x*\text{sin(\text{x})}}\}
\]
\[
\text{fungsi.g} <- \text{function(\text{x, y})}\{\text{\log(\text{x})+fungsi.f(\text{x})+exp(\text{y})}\}
\]

Fungsi \(g\) ini, selain mempunyai parameter yang lebih banyak dari \(f\) juga memanggil fungsi \(f\) dan ini hal yang bisa dilakukan dalam mendefinisikan fungsi-fungsi R. Agar fungsi \(g\) berfungsi dengan baik maka fungsi \(f\) harus sudah didefinisikan terlebih dahulu sebelum mendefinisikan fungsi \(g\).

I Made Tirta UNEJ 2015
Menghitung nilai fungsi dan akar-akar persamaan kuadrat

Kita dapat mendefinisikan fungsi untuk menghitung nilai fungsi persamaan tersebut untuk berbagai nilai konstanta dan variabel. Hal ini bermanfaat dalam membuat grafik dari persamaan tersebut.

**Contoh 2.12.** Fungsi untuk menghitung nilai fungsi kuadrat

\[
\text{f<-function(a,b,c,x)}\{
    a*x^2+b^x+c
\}
\]

Fungsi di atas dapat dievaluasi untuk nilai-nilai konstanta baik \(a\), \(b\), \(c\) maupun variabel \(x\) yang berbeda-beda. Selain menghitung nilai fungsi, kita juga dapat membuat program untuk menghitung akar-akar persamaan kuadrat.

**Contoh 2.13.** Misalkan kita ingin membuat program/fungsi R dari rumus abc untuk menghitung akar-akar persamaan kuadrat \(f(x) = ax^2 + bx + c = 0\) untuk berbagai nilai \(a\), \(b\), \(c\).

Berikut ini adalah langkah-langkah yang bisa ditempuh.

1. Yakinkan bahwa fungsi yang akan diprogramkan secara matematis sudah valid. Untuk fungsi yang merupakan rumus abc bentuk matematikanya adalah

\[
x_{12} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

Dalam format fungsi R, koefisien \(a\), \(b\), dan \(c\) diperlakukan sebagai parameter fungsi. Akar-akar \(x_1\) dan \(x_2\) didefinisikan sesuai dengan rumus abc. Ini adalah bagian algoritma yang harus dimiliki sebelum kita menulis skrip pemrograman. Untuk rumus abc, kita tahu hasil secara matematis untuk persamaan kuadrat fungsi matematikanya ditunjukkan oleh persamaan di atas.

I Made Tirta UNEJ 2015
2. Langkah selanjutnya adalah menerjemahkan rumus atau komponen-komponennya ke dalam bahasa R. Mengingat ada dua nilai yang dihasilkan yaitu \( x_1 \) dan \( x_2 \), maka variabel \( x_1 \) dan \( x_2 \) harus dikombinasikan melalui perintah `cbind(x1,x2)` jika dikelompokkan menjadi vektor baris, atau `rbind(x1,x2)` jika dikelompokkan menjadi vektor kolom. Vektor ini sekaligus menjadi hasil yang ditampilkan (`returned value`).

```r
fungsi.abc<-function(a,b,c){
 x1<-(-b+sqrt(b^2-4*a*c))/2*a
 x2<-(-b-sqrt(b^2-4*a*c))/2*a
 cbind(x1,x2)
}
```

2.4.4 Mengevaluasi Nilai Fungsi

Setelah fungsi terbentuk kita bisa melakukan evaluasi. Kita bisa mengevaluasi fungsi tersebut untuk suatu nilai \( a, b, c \) tertentu. Berikut adalah beberapa hasil yang diperoleh dari hasil evaluasi fungsi yang dibuat.

```r
> fungsi.abc(1,-5,6)
 x1 x2
[1,] 3 2
> fungsi.abc(1,0,-4)
 x1 x2
[1,] 2 -2
```

Jika pembentukan vektor menggunakan perintah `rbind(x1,x2)` maka kita akan memperoleh hasil seperti berikut

```r
> fungsi.abc(1,-5,6)
 [,1]
 x1 3
```

I Made Tirta UNEJ 2015
Selanjutnya apabila akar-akar yang terjadi adalah imajiner, maka komentar R yang muncul adalah

```r
> fungsi.abc(1,0,4)
 [,1]
x1 NA
x2 NA
```

NA berarti tidak ada hasil yang tersedia.

Jika dalam pemanggilan fungsi hanya diberi nilai parameter, R akan mendistribusikan nilai parameter sesuai dengan urutan parameternya. Jika dalam pemanggilan identitas parameternya telah ditentukan, urutan penempatan dapat berbeda. Pemanggilan berikut menghasilkan hasil yang sama

```r
fungsi.abc(1,-2,-15)
fungsi.abc(a=1,c=-15,b=-2)
fungsi.abc(c=-15,b=-2,a=1)
```

```r
> fungsi.abc(1,-2,-15)
x1 x2
 [1,] 5 -3
> fungsi.abc(a=1,c=-15,b=-2)
x1 x2
 [1,] 5 -3
> fungsi.abc(c=-15,b=-2,a=1)
x1 x2
 [1,] 5 -3
```

I Made Tirta UNEJ 2015
Untuk menjadikan program ini lebih komunikatif, maka kita perlu memberikan beberapa pesan yang lebih dipahami, kalau diskriminan dari rumus abc tersebut kurang dari 0. Untuk itu, kita perlu menggunakan perintah- perintah kontrol seperti if, if else. Fungsi di atas dapat dikembangkan menjadi seperti berikut ini.

```r
contoh fungsi untuk menghitung akar-akar persamaan
kuadrat dengan rumus abc
dalam fungsi ini a tidak boleh sama dengan 0.
fungsi.abc<-function(a,b,c){
 if(a==0){stop("a harus <>0")}
 D<-b^2-4*a*c # diskriminan
 if(D>=0){
 x1<-(-b+sqrt(b^2-4*a*c))/2*a
 x2<-(-b-sqrt(b^2-4*a*c))/2*a
 rbind(x1,x2) # membuat vektor akar-akar
 }
 else{cat("Akar-akar imaginer")}
 # pesan kalau D<0
}
```

Setiap kali kita melakukan perubahan atau revisi pada fungsi, maka fungsi itu harus di eksekusi dulu supaya perbaikannya menjadi efektif tercatat dalam R. Jika tidak, maka R tetap akan memanggil fungsi yang belum diperbaiki. Beberapa hasil yang diperoleh dari eksekusi fungsi yang telah dimodifikasi untuk berbagai nilai parameter $a, b, c$ adalah sebagai berikut.

```r
> fungsi.abc(1,0,-4)
[,1]
 x1 2
 x2 -2

> fungsi.abc(1,5,-6)
[,1]
 x1 1
 x2 -6
```

I Made Tirta UNEJ 2015
> fungsi.abc(1,5,6)
  [,1]
x1   -2
x2   -3

> fungsi.abc(1,0,4)
Akar- akar imaginer
>
> fungsi.abc(0,0,4)
Error in fungsi.abc(0, 0, 4):
a harus <>0

Prinsip penulisan fungsi di atas dapat dikembangkan untuk penulisan fungsi yang lebih kompleks, misalnya untuk analisis data, parameter fungsi dapat berupa: nama data, formula, distribusi data, dan lain-lainnya.

2.4.5 Mengemas Keluaran Fungsi

Untuk fungsi yang lebih kompleks, misalnya dalam analisis data, banyak hal yang dikerjakan dalam fungsi. Hal-hal yang dikerjakan dalam fungsi dapat dikemas menjadi satu kesatuan keluaran. Misalnya dalam hal persamaan kuadrat, selain perhitungan akar-akar, ada perhitungan diskriminan. Semua perhitungan ini dapat dikemas menjadi suatu daftar atau list(). Program fungsi.abc di atas selanjutnya dapat dimodifikasi dengan menambahkan beberapa baris program berikut.

\[
x12<-rbind(x1,x2) \quad \text{# membuat vektor akar- akar}
\text{hasil<-list()}
\text{hasil<-list(akar1=x12[1], akar2=x12[2], disk=D)}
\]

Pemanggilan fungsi dengan evaluasi nilai tertentu akan menghasilkan learan yang dilabel sebagai akar dan det.

$akar1
[1] 1

$akar2

I Made Tirta UNEJ 2015
2.4. MENULIS PROGRAM PADA R

[1] -3

$disk
[1] 16

Jika pemanggilan disimpan dalam suatu objek, misalkan x, maka sub-
komponen x dapat diperiksa melalui names(x) dan print(x)

> x<-fungsi.abc(1,2,-3)
> names(x)
[1] "akar1" "akar2" "disk"
> x$akar1
[1] 1
> x$akar2
[1] -3
> x$disk
[1] 16

Dalam analisis data, keluaran fungsi dapat berupa: nilai hitung statistik (nilai \( t, z, F \) dan sejenisnya), kesalahan baku dari masing-masing statistik, nilai peluang \( p-values \), dan informasi lain yang dianggap perlu. Semua keluaran dan hasil perhitungan yang dilakukan dapat dikemas dalam daftar keluaran \((\text{list}())\) dengan menggunakan identitas yang mudah untuk dipanggil.

Pada contoh berikut kita membuat fungsi yang menghitung statistik sampel (rata-rata, deviasi baku, maksimum, minimum, median dan sejenisnya). Semua keluaran ini dapat dikemas dalam \((\text{list}())\) keluaran.

fs.stat.norm<-function(n,mu,sd){
  x<-rnorm(n,mu,sd)
  mn<-min(x)
  mx<-max(x)
  vr<-var(x)
  md<-median(x)
  rt<-mean(x)
  rks<-list()
  rks<-list("n"=n,"rata-rata"=rt, "min"=mn, "maks"=mx, "variansi"=vr, "median"=md)
}

I Made Tirta UNEJ 2015
Eksekusi berikut menghasilkan

> y<-fs.stat.norm(1000,50,5)
> names(y)
[1] "n" "rata-rata" "min" "maks" "variansi" "median"

> print(y)

$n$
[1] 1000

$rata-rata$
[1] 50.08186

$min$
[1] 36.48708

$maks$
[1] 65.65245

$variansi$
[1] 26.41415

$median$
[1] 50.21028

2.4.6 Menghindarkan Loop

R lebih efisien bekerja menggunakan vektor dibandingkan dengan menggunakan loop if then seperti diuraikan sebelumnya. Burn (1998) mengilustrasikan bahwa dalam kondisi tertentu, penggunaan vektor dapat mempercepat eksekusi program secara dramatis. Ada dua kondisi utama yang perlu diperhatikan untuk mengganti loop dengan vektor, yaitu:(i) untuk kondisi dimana pada setiap putaran memiliki panjang elemen yang sama dapat dipergunakan matriks, (ii) untuk kondisi dimana pada setiap putaran memiliki panjang elemen yang tidak sama dapat dipergunakan fungsi apply.
Penggunaan Matriks/Vektor

Untuk *loop* yang sederhana, dapat digantikan dengan menggunakan matriks dengan cara

1. mengemas indeks
dalam satu vektor (atau kolom suatu matriks)
2. melakukan operasi secara keseluruhan pada vektor tersebut.

Berikut adalah adalah contoh *loop* yang diganti dengan penggunaan vektor/matriks. Misalkan kita ingin membuat program untuk menghitung seperti ditunjukkan oleh tabel berikut

<table>
<thead>
<tr>
<th>n</th>
<th>$n^2$</th>
<th>$n^3$</th>
<th>log n</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dengan menggunakan loop

```r
for (i in 1:100){
 n<-i*10
 t1<-n^2
 t2<-n^3
 t3<-log(n)
}
```

Dengan menggunakan matriks/vektor

```r
ind<-seq(1,100,1)
n<-ind*10
t1<-n^2
t2<-n^3
t3<-log(n)
```

Semakin banyak putaran *loop* semakin terasa beda kecepatannya dengan matriks atau vektor.

I Made Tirta UNEJ 2015
Penggunaan Aply

Misalkan kita ingin mengilustrasikan hubungan antara besarnya (ukuran) sampel dengan kedekatan rata-rata dengan mean populasi. Berarti pada setiap putaran loop kita harus membangkitkan data dengan ukuran sampel yang berbeda, lalu menghitung rata-ratanya. Persoalan ini sulit kalau dikerjakan dengan menggunakan matriks atau vektor seperti diatas. R menyediakan fungsi keluarga apply, yaitu apply, tapply, lapply untuk mengerjakan loop yang tidak bisa dikerjakan menggunakan matriks biasa. Sintaks penggunaan apply adalah

apply(matriks,p,fungsi)

Dengan

matriks adalah matriks yang akandijadikan sebagai acuan indeks dalam mengerjakan loop;

p adalah posisi yang dijadikan sebagai acuan yaitu:1 jika berdasarkan baris dan 2 jika berdasarkan kolom;

fungsi adalah fungsi yang mengatur tugas yang harus dikerjakan pada setiap putaran

Misalkan kita ingin menghitung rata-rata sampel dari berbagai sampel yang berasal dari populasi berdistribusi normal, \( N(50, 10) \), yang ukurannya semakin besar (10,20,30, ...,1000).

<table>
<thead>
<tr>
<th>( n )</th>
<th>( \mu = 50 )</th>
<th>( \sigma^2 = 25 )</th>
<th>( X )</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tugas yang harus dikerjakan komputer pada setiap putaran adalah:(i) membangkitkan data dan (ii) menghitung rata-ratanya. Tugas ini dapat didefinisikan dalam bentuk fungsi berikut:

myfun<-function(x){

  I Made Tirta UNEJ 2015

}
2.4. MENULIS PROGRAM PADA R

```
y<-rnorm(x)*sqrt(10)+50
mean(y)
```

Program lengkap dengan presentasi grafik yang menunjukkan hubungan antara ukuran sampel dengan rata-rata sampel adalah

1. Dengan loop

```
n<-100
m<-matrix(0,n,2)
for(i in 1:n){
 n<-i*10
 y<-rnorm(n)*sqrt(10)+50
 m[i,1]<-n
 m[i,2]<-mean(y)
}
plot(m[,1],m[,2],type='l',xlab='N',ylab='Rata-rata',main='Judul Grafik')
```

2. Dengan apply

```
n<-100
m<-matrix(0,n,1)
m[,1]<-10*seq(1,n,1)
myfun<-function(x){
 y<-rnorm(x)*sqrt(10)+50
 mean(y)
}
m2<-apply(m,1,myfun)
plot(m,m2,type='l',xlab='N',ylab='Rata-rata',main='Judul Grafik')
```

Tugas yang harus dikerjakan komputer pada setiap putaran dapat dibuat lebih kompleks misalnya menghitung ringkasan statistik sampel dan melaporkan banyaknya sampel

```
n<-10
m[,1]<-20*seq(1,n,1)
myfun<-function(x){
```

I Made Tirta UNEJ 2015
\begin{verbatim}
y<-rnorm(x)*sqrt(10)+50
c(x,summary(y))
\end{verbatim}

Keluaran yang dihasilkan adalah sebagai berikut

\begin{verbatim}
n 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00
Min. 46.40 41.46 41.37 43.89 40.46 41.78 43.20 40.75
1st Qu. 48.36 48.42 47.98 47.74 48.55 46.87 47.86 47.97
Median 49.20 50.10 50.58 49.47 50.02 49.21 50.03 50.01
Mean 49.95 50.39 50.16 49.64 50.14 49.57 50.09 49.95
3rd Qu. 51.78 52.41 52.41 51.47 52.46 52.17 52.12 52.16
Max. 54.42 57.16 56.70 56.04 55.98 58.86 58.12 59.60
\end{verbatim}

2.4.7 Menghitung Akar-Akar Persamaan dengan Metode Numerik

Untuk persamaan selain persamaan linear dan kuadrat, biasanya penyelesaian ditempuh dengan menggunakan metode numerik. Salah satu metode numerik yang banyak dipergunakan dalam statistika adalah Metode Newton-Raphson. Dalam statistika kita sering berhubungan dengan fungsi-fungsi likelihood yang akan dicari maksimumnya. Mencari maksimum dari suatu fungsi pada dasarnya sama dengan menyelesaikan persamaan dari turunan pertamanya. Pada umumnya persamaan seperti ini, dalam statistika jarang mempunyai penyelesaian analitik, sehingga harus dicari dengan metode numerik. Penyelesaian numerik suatu persamaan dicari melalui proses iterasi yaitu proses mengerjakan sekelompok operasi hitung yang semakin lama menghasilkan nilai yang semakin dekat dengan hasil yang sebenarnya, kecuali jika persamaan itu tidak memiliki jawaban. Secara umum bentuk iterasi Newton-Raphson yang dipergunakan untuk menyelesaikan persamaan \( f(x) = 0 \) adalah

\[
x_{1} = x_{0} - \frac{f(x)}{f'(x)}
\]

I Made Tirta UNEJ 2015
dengan \( f'(x) = df/dx \). Jika yang dicari adalah nilai \( x \) yang menyebabkan fungsi itu mencapai maksimum/minimum, maka iterasi Newton-Raphson ini dimodifikasi menjadi

\[
x_1 = x_0 - \frac{f'(x)}{f''(x)}
\]

(2.2)

Hal ini sesuai dengan penjelasan sebelumnya bahwa mencari titik maksimum suatu fungsi sama halnya mencari penyelesaian dari fungsi turunan pertamanya.

**Contoh 2.14.** Misalkan kita ingin mencari titik maksimum atau minimum dari fungsi:

\[
f(x) = \sin(x) + x^2 + 2x \text{ pada } -10 \leq x \leq 10.
\]

(2.3)

Langkah-langkah untuk membuat program dalam mencari titik maksimum fungsi tersebut dengan menggunakan Metode Newton-Raphson adalah seperti berikut.

1. **Menentukan hasil-hasil matematika.** Dalam hal ini, fungsi yang diperlukan adalah turunan pertama dan kedua dari bagian persamaan yang dicari akar-akarnya. Dengan menggunakan berbagai tehnik dalam diferensial integral diperoleh hasil sebagai berikut. Fungsi turunan pertama dan kedua:

\[
f'(x) = \cos(x) + 2x + 2
\]

(2.4)

\[
f''(x) = -\sin(x) + 2
\]

(2.5)

2. **Menulis skrip fungsi.** Skrip lengkap fungsi untuk menghitung titik minimum adalah:

\[
d<-2
eps<-0.01
x0<-0
f.f1<-function(x){

I Made Tirta UNEJ 2015
BAB 2. RCLI: MELANGKAH MELAMPAUI MENU

\[
\cos(x)+2x+2
\]

```r
f.f2<-function(x){
 -sin(x)+2

it<-0
cat("\n Iterasi: ")
while(d>eps){
it<-it+1
x1<-x0-f.f1(x0)/f.f2(x0)
d<-abs(x1-x0)
x0<-x1
cat(" ",it)}
```

print(x0)

```r
x<-seq(-2,1,0.1)
y<-sin(x)+x^2+2*x
f1<-cos(x)+2*x+2
f2<-sin(x)+2
plot(x,y,type='l',main='Grafik Fungsi dan Turunannya',xlab='X', ylab='Y')
lines(x,f1,lty=2)
lines(x,f2,lty=3)
lines(x,0*x)

ya<-seq(-2,4,0.1)
xa<-0*ya+x0
lines(xa,ya,lty=3)
```

Secara geometris dapat diilustrasikan/diperiksa kebenaran antara fungsi, turunannya dan nilai maksimum atau minimum dengan memeriksa grafiknya. Ilustrasi pada Gambar 2.9 halaman 97 menunjukkan hubungan sebagai berikut:

- saat \( f(x) \) mencapai nilai minimum/maksimum, \( f'(x) = 0 \);
- nilai merupakan minimum jika \( f''(x) > 0 \), sebaliknya merupakan maksimum jika \( f''(x) < 0 \).

I Made Tirta UNEJ 2015
Gambar 2.9: Ilustrasi Maksimum/ Minimum dengan Newton Raphson.

Contoh 2.15. Buat program untuk mencari titik maksimum/ minimum dari persamaan dengan menggunakan metode Newton-Raphson.

\[ f(x) = x \exp \left( -\frac{x^2}{10} \right) \]

Dengan mengikuti langkah-langkah pemrograman sebelumnya, kita akan peroleh hasil dari tiap-tiap tahap sebagai berikut.

1. Fungsi-fungsi turunan

\[ f'(x) = \left( -\frac{2x^2}{10} + 1 \right) \exp \left( -\frac{x^2}{10} \right) \]
\[ f''(x) = \left( \frac{4x^3}{100} - \frac{6x}{10} \right) \exp \left( -\frac{x^2}{10} \right) \]

2. Dalam fungsi R fungsi turunan tersebut dapat ditulis sebagai berikut.
BAB 2. RCLI: MELANGKAH MELAMPAUI MENU

3. Menentukan nilai awal. Nilai awal dari $x$ dapat ditentukan, misalnya $x_0 = 5$ atau $x_0 = -5$. Sedangkan $\Delta x = 10$ (delta.x) dan $\epsilon$ (crit) sebagai kriterium konvergensi dapat dipilih sekecil mungkin sesuai keparluan, misalnya 0.001. Sebelum program berjalan sebagaimana mestinya nilai $\epsilon$ dibuat agak besar, misalnya 0.5, sehingga dalam pengujian program tidak memakan waktu terlalu lama.

4. Bagian utama. Bagian utama dari program ini berisi:

```r
looping
no.it<-0 cat("x awal adalah ",x0,"\n")
while(delta.x>crit){
 x1<-x0-f.tur.1(x0)/f.tur.2(x0)
 delta.x<-abs(x1-x0)
 x0<-x1
 no.it<-noit+1 }

no.it hanyalah konter/pencacah untuk mendeteksi jumlah iterasi yang diperlukan. Pada bagian penutup kita dapat memerintahkan komputer untuk mencetak hasil.

cat("Fungsi akan memperoleh nilai max/min pada titik x=",x1,"\n")
cat("Tingkat ketelitian adalah ",delta.x,
```
I Made Tirta UNEJ 2015
2.4. MENULIS PROGRAM PADA R

"dan banyaknya iterasi
adalah ",no.it,"\n")

Selanjutnya hasil yang diperoleh dari mengeksekusi program yang
dibuat dengan berbagai titik awal adalah

\[ x\text{ awal} = -4 \text{ Fungsi memperoleh nilai max/min pada titik} \]
\[ x=-2.244951635172 \]
Tingkat ketelitian adalah 0.000934621250368472
Banyaknya iterasi adalah 53

\[ x\text{ awal} = 3 \text{ Fungsi akan memperoleh nilai max/min pada titik} \]
\[ x=2.2448623841328 \]
Tingkat ketelitian adalah 0.00093363323004958
Banyaknya iterasi adalah 44

Hasil di atas menunjukkan bahwa fungsi yang kita evaluasi memi-
likii dua titik dimana dia mencapai maksimum/ minimum. Ilustrasi
akan lebih jelas pada saat kita menampilkan grafik fungsi tersebut.

Untuk menghitung akar-akar persamaan fungsi multivariabel (fungsi
dua variabel atau lebih) prinsip yang kita gunakan sama, hanya kita
bekerja dalam operasi vektor/ matriks (\(v\)), vektor/matriks turunan
pertama \(D\) dan turunan kedua dari fungsi tersebut adalah matriks
Hessiannya (\(H\)) dan bentuk iterasi Newton-Raphsonya menjadi

\[ v_1 = v_0 - H^{-1}D \] (2.8)

atau lebih lengkapnya

\[
\begin{pmatrix}
  v_1 \\
  v_2 \\
  \vdots \\
  v_p
\end{pmatrix}
= \begin{pmatrix}
  v_1 \\
  v_2 \\
  \vdots \\
  v_p
\end{pmatrix} - \begin{pmatrix}
  \frac{\partial^2 f}{\partial v_1^2} & \frac{\partial^2 f}{\partial v_1 \partial v_2} & \cdots & \frac{\partial^2 f}{\partial v_1 \partial v_p} \\
  \frac{\partial^2 f}{\partial v_2 \partial v_1} & \frac{\partial^2 f}{\partial v_2^2} & \cdots & \frac{\partial^2 f}{\partial v_2 \partial v_p} \\
  \vdots & \vdots & \ddots & \vdots \\
  \frac{\partial^2 f}{\partial v_p \partial v_1} & \frac{\partial^2 f}{\partial v_p \partial v_2} & \cdots & \frac{\partial^2 f}{\partial v_p^2}
\end{pmatrix} \begin{pmatrix}
  \frac{\partial f}{\partial v_1} \\
  \frac{\partial f}{\partial v_2} \\
  \vdots \\
  \frac{\partial f}{\partial v_p}
\end{pmatrix}_0
\] (2.9)

I Made Tirta UNEJ 2015
BAB 2. RCLI: MELANGKAH MELAMPAUI MENU

Misalkan kita ingin mencari titik maksimum atau minimum dari fungsi

\[ f(x, y) = -x^2 + 2xy + 2x - 4y - 3y^2, \]

maka langkah yang harus kita tempuh adalah mencari fungsi turunan pertama dan kedua terhadap \( x \) dan \( y \) dari fungsi di atas. Hasil matematikanya adalah sebagai berikut.

**Hasil-hasil matematika**

\[
\begin{align*}
\frac{\partial f}{\partial x} &= 2x + 2y + 2 & (2.10) \\
\frac{\partial f}{\partial y} &= 2x - 4 - 6y & (2.11) \\
\frac{\partial^2 f}{\partial x^2} &= 2 & (2.12) \\
\frac{\partial^2 f}{\partial y^2} &= -6 & (2.13) \\
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} &= 2 & (2.14)
\end{align*}
\]

**Fungsi-fungsi R** Dalam bahasa R fungsi dapat ditulis sebagai berikut.

\[
\begin{align*}
\text{fmv} & \leftarrow \text{function}(x, y)\{ \\
& \quad -x^2 + 2xy + 2x - 4y - 3y^2\} \\
\text{df.dx} & \leftarrow \text{function}(x, y)\{ \\
& \quad -2x + 2y + 2\} \\
\text{df.dy} & \leftarrow \text{function}(x, y)\{ \\
& \quad 2x - 6y - 4\}
\end{align*}
\]

Fungsi \( f(x, y) \) didefinisikan dalam R bermanfaat jika dibuat ilustrasi grafiknya (3 dimensi) baik dalam bentuk perspektif maupun konturnya. Hal ini sangat bermanfaat untuk mengilustrasikan adanya maksimum/minimum secara grafis atau numerik. Untuk turunan ke dua karena hanya berupa konstanta,

I Made Tirta UNEJ 2015
maka matriksnya langsung dapat didefinisikan

\[
H = \begin{pmatrix} 2 & 2 \\ 2 & -6 \end{pmatrix}
\]

Dalam bahasa R dapat didefinisikan dengan

\[
H<-\text{matrix(c(-2,2,2,-6),2,2)}
\]

**Inisiasi.** Nilai awal variabel yang perlu ditetapkan terlebih dahulu adalah nilai awal \( v_0 \), matriks \( D \), kriteria konvergensi.

\[
v0<-\text{matrix(0,2,1)}
\]
\[
D<-\text{matrix(0,2,1)}
\]
\[
crit<-0.001
\]
\[
delta<-10
\]

**Program inti.** Bagian ini terdiri atas loop Newton-Raphson dalam dua variabel.

\[
\text{while(delta}>\text{crit}){
D[1,1]<-df.dx(x,y)
D[2,1]<-df.dy(x,y)
v1<-v0-solve(H)%*%D
delta<\text{max(abs(v0-v1))}
v0<-v1
it<-it+1
cat("It ",it,"V=",v1,"delta=",delta,"\n") }
\]
\[
\text{print(v1)}
\]

Hasil yang diperoleh adalah

I Made Tirta UNEJ 2015
BAB 2. RCLI: MELANGKAH MELAMPAUI MENU

It 1
\[ v = 0.499999999999998 -0.5; \]
delta= 10.5

It 2
\[ v = 0.5 -0.5; \]
delta = 1.7763568394003e-015

\[ \text{print(v1)} \]
\[ [,1] \]
\[ [1,] 0.5 \]
\[ [2,] -0.5 \]

Jadi, program yang dibuat konvergen dalam dua iterasi. Dari beberapa contoh tadi jelas bagi kita bahwa pada dasarnya fungsi R adalah fungsi matematika yang didefinisikan dengan menggunakan bahasa R. Ini menunjukkan bahwa alur logika pemrograman dengan R secara alamiah sejalan dengan alur logika matematika.

2.5 Mendefinisikan Ulang Fungsi Internal

Secara teoritis fungsi-fungsi internal R dapat ditiru untuk, misalnya, didefinisikan ulang menggunakan bahasa Indonesia. Jika suatu fungsi dipanggil namanya tanpa memberi parameter, maka yang keluar adalah definisi fungsinya. Misalnya pemanggilan fungsi plot akan menghasilkan tampilan berikut yang merupakan definisi fungsi plot.

\[ \text{plot # tanpa tanda kurung ( )} \]
\[ \text{function (x, y, ...)} \]
\[ \{ \]
\[ \text{if (is.null(attr(x, "class")) && is.function(x))} \]
\[ \text{nms <- names(list(...))} \]
\[ \text{if (missing(y))} \]
\[ \text{y <- \{} \]

I Made Tirta UNEJ 2015
Untuk mendefinisikan ulang fungsi `plot()` dengan nama `gambar()`, maka kita cukup mendefinisikan fungsi `gambar()` dengan menggunakan skrip definisi tersebut, lalu menjalankan skrip yang ada. Selanjutnya, kita bisa memanggil fungsi `gambar` sebagaimana memanggil fungsi `plot()`. Perlu diketahui bahwa untuk dokumentasi (bantuan dan lain-lain) perlu didefinisikan tersendiri.

```r
gambar <- function (x, y, ...){
 if (is.null(attr(x, "class")) && is.function(x)) {
 nms <- names(list(...))
 if (missing(y))
 y <- {
 if (!"from" %in% nms)0
 else if (!"to" %in% nms)1
 else if (!"xlim" %in% nms) NULL
 }
 if ("ylab" %in% nms)
 plot.function(x, y, ...)
 else plot.function(x, y,
 ylab = paste(deparse(substitute(x)),
 "(x)"), ...)
 }
 else UseMethod("plot")
}
```

I Made Tirta UNEJ 2015
2.6 Memanfaatkan Paket Program R

Fungsi-fungsi kompleks untuk keperluan tertentu (misalnya regresi, grafik, atau analisis data lainnya) telah banyak dibuat dan dikemas orang dalam bentuk paket-paket \( \textit{packages} \) program R. Hampir semua paket program R didistribusikan secara cuma-cuma dan disediakan di situs R dan dapat dimanfaatkan bersama dengan program utama R. Paket-paket yang telah diinstal bersama R akan ditempatkan dalam direktory \textit{library}, oleh karena itu paket yang telah diinstal lebih populer disebut sebagai \textit{library} atau pus-taka.

2.6.1 Mencari Informasi Paket Program R

Hal pertama dan terpenting yang dapat dilakukan dalam menggunakan program R adalah mendapatkan informasi tentang fasilitas yang tersedia. Dari tampilan sebelumnya dapat diketahui bahwa jika kita ingin mengetahui beberapa kemampuan dan fasilitas R dapat dilakukan dengan menggunakan salah satu alternatif berikut.

\texttt{help()} untuk mengetahui dokumentasi bantuan secara umum. Selanjutnya kita dapat memilih topik yang tersedia dan lebih mengkhususkan pencarian kita pada topik tersebut dengan menggunakan \texttt{help(topik)}.

\texttt{help.start().} Untuk mengaktifkan dokumentasi dalam format html yang lebih interaktif. Pengguna selanjutnya dapat memilih topik yang tersedia seperti layaknya mencari informasi di internet.

\texttt{help.search("kata kunci").} Jika kita ingin mendapat informasi dari suatu topik tertentu dapat juga kita masukkan suatu \texttt{kata kunci} melalui \texttt{help.search()}.

I Made Tirta UNEJ 2015
Misalkan kita ingin mencari informasi tentang analisis regresi, maka kata kunci yang mungkin bisa dimasukkan di antaranya adalah *regression*, *linear model*. Hasil pelacakan menghasilkan

```r
> help.search("regression")
Help files with alias or concept or title matching 'regression' using fuzzy matching:

MCMClogit(MCMCpack) Markov chain Monte Carlo for Logistic Regression
...
gam(mgcv) Generalized Additive Models using penalized regression splines and GCV

gam.fit(mgcv) Generalized Additive Models fitting using penalized regression splines and GCV
...
ksmooth(stats) Kernel Regression Smoother
lm(stats) Fitting Linear Models
```

Sementara itu, pelacakan dengan menggunakan *linear models* menghasilkan

```r
> help.search("linear models")
Help files with alias or concept or title matching 'linear models' using fuzzy matching:

stdres(MASS) Extract Standardized Residuals from a Linear Model
studres(MASS) Extract Studentized Residuals from a Linear Model
gls(nlme) Fit Linear Model Using Generalized Least Squares
...
```

I Made Tirta UNEJ 2015
Nama dalam kurung menunjukkan pustaka tempat perintah tersebut berada. Untuk memperoleh informasi lebih lanjut, yang perlu dilakukan adalah:

1. mengaktifkan pustaka bersangkutan dengan menggunakan `library(NamaPustaka)` dan
2. mencari informasi dengan menggunakan `help(topik)`.

Misalkan kita ingin mendapat informasi `gam(mgcv)` maka yang harus kita lakukan adalah menjalankan perintah berikut.

```r
>library(mgcv)
>help(gam)
```

Sebagian dari dokumentasi fungsi ini diberikan pada keluaran berikut:

```
> gam package:mgcv R Documentation

Generalized Additive Models using penalized regression splines and GCV

Description:

Fits the specified generalized additive model (GAM) to data. Smooth terms are represented using penalized regression splines with smoothing parameters selected by GCV/UBRE or by regression splines with fixed degrees of freedom (mixtures of the two are permitted). Multi-dimensional smooths are available using penalized thin plate regression splines (isotropic) or tensor product splines (when an isotropic smooth is inappropriate). For more on specifying models see 'gam.models'.

I Made Tirta UNEJ 2015
```
For more on model selection see 'gam.selection'.
For large datasets see warnings. ...

Usage:

gam(formula,family=gaussian(),data=list(),
     weights=NULL, subset=NULL,
     na.action,offset=NULL,control=gam.control(),
     scale=0,knots=NULL,
     sp=NULL,min.sp=NULL,H=NULL,gamma=1,
     fit=TRUE,G=NULL,...)

...

References:

Key References on this implementation:

   Estimation with Multiple Quadratic Penalties.


Wood (2001) mgcv:GAMs and Generalized Ridge
   Regression for R. R News 1(2):20-25

Example

   library(mgcv)
   set.seed(0)
n<-400
sig<-2
x0 <- runif(n, 0, 1)

I Made Tirta UNEJ 2015
x1 <- runif(n, 0, 1)
x2 <- runif(n, 0, 1)
x3 <- runif(n, 0, 1)
f <- 2 * sin(pi * x0)
f <- f + exp(2 * x1) - 3.75887
f <- f + 0.2 * x2^11 * (10 * (1 - x2))^-6 + 10 * (10 * x2)^3
*(1 - x2)^10 - 1.396
e <- rnorm(n, 0, sig)
y <- f + e
b <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3))
summary(b)
plot(b)

Dalam tiap-tiap pustaka, biasanya ada informasi referensi untuk mempelajari teori serta beberapa contoh penggunaan pustaka tersebut, seperti terlihat pada dokumentasi gam(mgcv) sebelumnya. Apabila sebagian contoh yang ada skripnya gam() ini dikopi ke RConsole maka diperoleh keluaran seperti berikut dan grafik smoothing untuk tiap-tiap peubah bebas yang ditunjukkan oleh Gambar 2.10.

Family: gaussian
Link function: identity

Formula:
y ~ s(x0) + s(x1) + s(x2) + s(x3)

Parametric coefficients:

|                | Estimate | std. err. | t ratio | Pr(>|t|) |
|----------------|----------|-----------|---------|----------|
| (Intercept)    | 2.7602   | 0.1049    | 26.31   | < 2.22e-16 |

Approximate significance of smooth terms:

<table>
<thead>
<tr>
<th></th>
<th>edf</th>
<th>chi.sq</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>s(x0)</td>
<td>5.173</td>
<td>28.87</td>
<td>4.4272e-05</td>
</tr>
</tbody>
</table>

I Made Tirta UNEJ 2015
2.6. MEMANFAATKAN PAKET PROGRAM R

s(x1) 2.357 302.05 < 2.22e-16
s(x2) 8.517 753.1 < 2.22e-16
s(x3) 1 0.44123 0.50693

R-sq.(adj) = 0.726  Deviance explained = 73.7%
GCV score = 4.611  Scale est. = 4.4029  n = 400

2.6.2 Memanggil Pustaka dengan CLI

Apabila kita telah mengetahui cara pemanfaatan suatu pustaka melalui contoh yang ada, maka kita dapat menirunya untuk dipergunakan dalam analisis data riil yang kita miliki. Misalkan dari data Orange dengan variabel Tree, age dan circumference, kita dapat melakukan analisis gam yang paling sederhana seperti berikut.

> attach(Orange)
> library(mgcv)
> summary(gam(circumference~age,data=Orange))

Family: gaussian  
Link function: identity

Formula:
circumference ~ age

Parametric coefficients:
Estimate std. err.  t ratio  Pr(>|t|)
(Intercept) 17.4  8.623  2.018 0.051793
age 0.10677 0.008277 12.9 1.9306e-14

R-sq.(adj) = 0.83  Deviance explained = 83.5%
GCV score = 597.63  Scale est. = 563.48  n = 35

Dengan pilihan distribusi = Gamma dan fungsi link log, maka diperoleh hasil

I Made Tirta UNEJ 2015
Gambar 2.10: Contoh Grafik *Smoothing* dengan analisis GAM pada Pustaka mgcv

I Made Tirta UNEJ 2015
> summary(gam(circumference~age+Tree,family=Gamma(log),
  data=Orange))

Family: Gamma
Link function: log

Formula:
circumference ~ age + Tree

Parametric coefficients:

|                    | Estimate | std. err. | t ratio | Pr(>|t|) |
|--------------------|----------|-----------|---------|----------|
| (Intercept)        | 3.5246   | 0.06863   | 51.35   | < 2.22e-16 |
| age                | 0.0011746| 6.588e-05 | 17.83   | < 2.22e-16 |
| Tree.L             | 0.30679  | 0.07141   | 4.296   | 0.00017816 |
| Tree.Q             | 0.013257 | 0.07141   | 0.1856  | 0.85402   |
| Tree.C             | -0.059361| 0.07141   | -0.8312 | 0.41263   |
| Tree^4             | -0.064685| 0.07141   | -0.9058 | 0.37251   |

R-sq.(adj) = 0.835  Deviance explained = 90.5%
GCV score = 0.043084  Scale est. = 0.035698  n = 35

2.7 Mengemas Fungsi Menjadi Paket

Berbagai fungsi yang terkait dengan permasalahan tertentu dapat
dikemas manjadi suatu paket. Paket yang dihasilkan selanjutnya da-
pat dipublikasikan dan dimanfaatkan orang lain. R sesungguhnya
telah menyediakan panduan khusus untuk pengembangan paket.
Ada beberapa komponen penting yang harus disiapkan dalam menyusun
paket yaitu:

1. **Fungsi R.** Program yang memuat definisi fungsi-fungsi yang
   ingin dijadikan paket. Cara mendefinisikan fungsi secara garis
   besar telah dibahas pada bagian sebelumnya.

I Made Tirta UNEJ 2015
2. **Panduan.** Bagian ini memuat panduan atau manual dari fungsi-fungsi penting yang akan dijadikan paket. Pedoman penulisan panduan atau manual paket dapat dilihat pada dokumentasi setiap versi R yang berjudul *Writing R Extension*. Panduan yang ada seara khusus membahas pembuatan pedoman dengan menggunakan pengolah kata $\LaTeX$.

Sesungguhnya langkah langkah pengemasan paket juga dapat dilihat pada dokumen yang sama, namun bagi pemula hal tersebut relatif sulit diikuti. Schnute (2006) dan Schnute (2007) menguraikan langkah-langkah yang lebih rinci dan sederhana untuk membuat paket. Langkah-langkah yang perlu dibuat dapat dibedakan menjadi dua bagian besar yaitu:

1. **Instalasi program-program yang diperlukan.** Ada beberapa program yang diperlukan untuk membuat paket R yaitu Program R itu sendiri, Program rtool, Perl dan MinGW untuk membuat struktur paket, Program $\LaTeX$ (misalnya MikTex 2.5 dengan Editornya WinEdt) untuk memroses dokumentasi dan panduan, Program HTML Help untuk membuat dokumentasi dalam bentu HTML.

2. **Pemrosesan Paket** Jika piranti lunak yang dibutuhkan sudah berfungsi dengan baik, selanjutnya langkah untuk membuat paket adalah sebagai berikut.


   (b) Dalam direktori ini selanjutnya dibuat subdirektori yaitu subdirekori man (tempat menyimpan file-file panduan, dan

I Made Tirta UNEJ 2015
subdirektori R (tempat menyimpan file-file R), termasuk file zzz.r


2.8 CLI dan RCommander

Gambar 2.11: Perintah Menu pada Jendela Skrip. Perintah-perintah yang dipanggil melalui menu dapat dicatat pada Jendela Skrip

Sesungguhnya setiap kali kita mengirim perintah ke R melalui RCommander, maka skrip CLI-nya disalin pada Jendela Skrip. Skrip ini dapat dimodifikasi dan selanjutnya dikirim ke R melalui panel “Submit”. Modifikasi dapat dilakukan, misalnya, untuk mengganti judul grafik, judul absis, warna grafik, dan sebagainya (lihat Gambar 2.12). Untuk mengirim baris perintah pada Jendela Skrip dapat dilakukan langkah-langkah berikut:

1. tulis perintah R atau modifikasi perintah baris yang ada pada Jendela Skrip;

I Made Tirta UNEJ 2015
2. blok (*highlight*) baris perintah yang dimaksud;
3. klik panel “Submit”.

Perhatikan bahwa kalau sebelum ini R Commander hanya mampu mengirim secara efektif 1 baris perintah, maka sejak versi 1.3-12, R Commander sudah bisa mengirim lebih dari 1 baris perintah. Untuk perintah lebih dari 1 baris, lakukan dengan:

1. blok (*highlight*) bagian yang ingin dijalankan, lalu tekan tombol *kirim*;
2. tekan langsung *kirim*, jika semua skrip ingin dikirim sekaligus;
3. *copy-paste* perintah langsung ke Console R;
4. mengedit dan menjalankan skrip dengan Jendela Command dari SciViews atau Tinn-R.

### 2.9 Bacaan Lebih lanjut


Selain itu masih banyak referensi *on-line* yang dapat dilihat pada situs [http://www.r-project.org](http://www.r-project.org) seperti telah diuraikan sebelumnya.

I Made Tirta UNEJ 2015
Gambar 2.12: Perintah Menu pada Jendela Skrip dapat dieksekusi langsung
D

Diagram Pencar (*Scattergram*) Diagram pencar adalah representasi grafik dari distribusi dua peubah acak yang disajikan dalam bentuk titik-titik dengan koordinat ditentukan oleh nilai observasi pasangan peubah acak tadi.

H

**html** HTML (*Hyper Text Markup Language*) adalah format dokumen/file yang dipergunakan untuk mengkonstruksi informasi pada situs internet.

I

**Ikon** ikon/`icon` adalah gambar/logo kecil yang mewakili suatu program dan apabila gambar ini di-klik, maka program terkait akan dibuka.
Keluarga Eksponensial  
Keluarga Eksponensial adalah distribusi yang merupakan kesatuan (unifikasi) distribusi-distribusi penting yang banyak dipakai seperti antara lain Normal, Gamma, Binomial, Poisson dalam satu bentuk distribusi.

Latex  
Latex adalah salah satu program OSS (Open Source Software) untuk pengolah kata. Program ini dipergunakan secara luas di kalangan para matematis.

Legend  
Legend adalah simbol/tanda yang dipergunakan dalam grafik untuk membedakan adanya subkelompok dari data yang digambar.

Linux  
Linux adalah salah satu program OSS (Open Source Software) untuk sistem operasi. Program mulai banyak diminati sebagai alternatif sistem operasi selain windows atau unix.

Matriks Diagram Pencar  
Matriks Diagram Pencar (Scatter Plot Matrix) adalah matriks yang menggambarkan diagram pencar lebih dari dua variabel. Pada diagonal biasanya disajikan densitas, histogram atau diagram kuantil, sedangkan pada off diagonal disajikan diagram pencar masing-masing pasangan variabel.

Outlier/pencilan  
Pencilan adalah data yang besarnya menyimpang dari kelompoknya melebihi batas kewajaran distribusi data.
**P**

**Parameter**  Parameter (statistika) adalah ukuran deskriptif numerik dari populasi.

**Parameter**  Parameter (fungsi pada R) adalah bagian dari fungsi yang nilainya dapat ditentukan pada saat pemanggilan fungsi tersebut. Misalnya dalam rumus abc ada tiga parameter yang diperlukan (a,b, dan c).

**Plugin/Plug-in**  Adalah program yang dapat digabungkan menjadi bagian dari proram lain yang lebih besar. Dalam buku ini Paket-peket Plug-in R Commander, menunya dapat digabungkan menjadi bagian dari menu R Commander.

**Populasi**  Populasi adalah himpunan semesta dari variabel yang menjadi perhatian peneliti.

**Q**

**QQPlot**  QQplot atau Plot Kuantil adalah diagram yang menggambarkan hubungan antara quantil teoritis suatu distribusi dengan kuantil riil suatu data. Khusus untuk distribusi normal grafiknya disebut *QQnorm*.

**S**

**Skrip**  Skrip adalah naskah yang berisi berbagai perintah yang harus dilaksanakan oleh komputer melalui suatu bahasa atau program tertentu.

**W**

**Widget**  Widget adalah komponen GUI yang dihasilkan oleh TclTk, yang meliputi jendela, tombol, slider dan sebagainya.

I Made Tirta UNEJ 2015
Workspace  *Workspace* adalah kondisi kerja yang telah dilakukan oleh R yang menyangkut data aktif, pustaka aktif dan objek-objek yang dihasilkan. R dapat menyimpan informasi ini sebelum ditutup untuk dipergunakan pada eksekusi berikutnya.
Baron & Y. Li, J. (n.d.), *Notes on the Use of R for Psychology Experiment and Questionnaire*, http://www.r-project.org.


I Made Tirta UNEJ 2015


I Made Tirta UNEJ 2015


INDEKS PENULIS

Baron, 34
Bowerman, 68
Burns, 33, 117
Chamber, 35, 141
Dalgaard, 156
Everitt, 35, 141
Faraway, 3, 34
Fox, 38, 73
Grosjean, 70, 73
Hadi, 67
Hastie, 35, 141
Kuhnert, 34
Li, 34
Maindonald, 34
Marazzi, 141
McCullagh, 68
Mendenhall, 68
Murrell, 141
Nelder, 68
Netter, 68
Ousterhout, 156
Paradis, 33
R-Team, 32, 33
Ripley, 34, 68, 141
Schnute, 139, 150
Sudjana, 67
Tibshirani, 35
Tirta, 141, 150, 151
Venables, 34, 68, 141

261
Vezalini, 34
Welch, 156
INDEKS SUBJEK

aplot, 220
barisan, 87
berpola, 88
berorientasi objek, 3
biplot, 221
CLI, 2
data, 61
memanggil, 61
menyusun, 63
demo, 30
diagram
diagram pencar
glosari, 55
emacs, 20
ESS, 6 20
fungsi, 103 110

file, 101
grafik, 95
matematika, 85 86
matriks, 87 88
R, 219
statistika, 91

Geostatistika, 32
glm, 31
dinamik, 147
GUI, 2 3

hplot, 221 223

internasionalisasi, 148

Jendela Command
SciViws, 82

kelengkapan R, 5
latex, ix, 61
library, 2, 5
tar.gz, 5
tcltk, 144
zip, 5
Linux, 4
   Debian, 5
   emacs, 20
   ESS, 20
   instal
      pustaka, 22
      install
         paket utama, 22
         Mandrake, 5, 42
         R Commander, 42
         Shuse, 5
multivariat, 221
objek, 3
parameter, 93
glosari, 92
plugin, 66, 67, 149
program
   algoritma, 104
   diagram alir, 104
   komponen, 102
   langkah, 104
   pustaka, 2, 5, 131
   aktifkan, 133
   daftar seluruh, 165
   fungsi, 133
   instal
Windows, 22
   install
      Linux, 22
      kepustakaan, 135
      rangkuman, 26
SciViews
dock, 16
tcltk, 144
R Commander, 38
Indonesia
   Linux, 38
   Windows, 38
SciViews, 73
Rcli, 82
RGUI, 6
   Linux, 6
   R Commander, 9
   SciViews, 3, 9, 12, 71
   WinEdt, 3
S, 2
S-Plus, 85
SciViews, 69
   dock, 70, 71
   pustaka, 16
   dokumentasi, 80
   file eksplorer, 74
   kartu referensi, 77
   objek eksplorer, 76
   R Commander, 73
   RGUI, 71
Sciviews, 6
   simulasi, 103

I Made Tirta UNEJ 2015
normal
  multivariat, 241
  univariat, 239
StatDemo, 151

tcl, 144
tcltk, 144
  menu dialog, 144
  R Commander, 146
tcltk2, 156
Tinn-R, 6
tk, 144
TkRPlot, 150

widget, 151
%*%, 88
a, 220
axis(), 95
biplot(), 221
cat(), 101
cor(), 91
demo(), 30, 101
det(), 88
diag(), 88
dnorm(), 93, 239
dnorm(), 239
edit(), 63
example(), 101
gamma(), 86
interaction.plot(), 223
layout(), 96
legend(), 95
list(), 115
log10(), 86
matrix(), 88
max(), 91
mean(), 91
median(), 91
min(), 91
mvrnorm(), 241
names(), 116
par(), 95, 227
plot(), 95
pnorm(), 93, 239
points(), 95
print(), 101
prod(), 88
qnorm(), 93, 239
read.table(), 101
rep(), 88
rnorm(), 93, 239
sample(), 91
seq(), 88
sink(), 101
solve(), 88
source(), 101
split.screen(), 96
sum(), 88
t(), 88
tcltk2, 156
text(), 95
tr(), 88
tranc(), 86
var(), 91